The $-calculus process algebra for problem solving: A paradigmatic shift in handling hard computational problems
نویسنده
چکیده
The $-calculus is the extension of the π -calculus, built around the central notion of cost and allowing infinity in its operators. We propose the $-calculus as a more complete model for problem solving to provide a support to handle intractability and undecidability. It goes beyond the Turing Machine model. We define the semantics of the $-calculus using a novel optimization method (the kΩ -optimization), which approximates a nonexisting universal search algorithm and allows the simulation of many other search methods. In particular, the notion of total optimality has been utilized to provide an automatic way to deal with intractability of problem solving by optimizing together the quality of solutions and search costs. The sufficient conditions needed for completeness, optimality and total optimality of problem solving search are defined. A very flexible classification scheme of problem solving methods into easy, hard and solvable in the limit classes has been proposed. In particular, the third class deals with non-recursive solutions of undecidable problems. The approach is illustrated by solutions of some intractable and undecidable problems. We also briefly overview two possible implementations of the $-calculus. c © 2007 Elsevier B.V. All rights reserved.
منابع مشابه
The $-Calculus Process Algebra of Bounded Rational Agents Applied to Selected Problems in Bioinformatics
The solutions of bioinformatics problems very often require searching through very large search spaces. A new technique for the solutions of hard computational problems in bioinformatics is investigated. This is the $calculus process algebra for problem solving that applies the cost performance measures to converge to optimal solutions with minimal problem solving costs. We demonstrate that the...
متن کاملThe $-Calculus Process Algebra for Problem Solving and its Support for Bioinformatics
In this paper a new technique for the solutions of hard computational problems in bioinformatics is investigated. This is the $-calculus process algebra for problem solving that applies the cost performance measures to converge to optimal solutions with minimal problem solving costs. We demonstrate that the $-calculus generic search method, called the kΩ-optimization, can be used to solve gene ...
متن کاملSolving the Traveling Salesman Problem by an Efficient Hybrid Metaheuristic Algorithm
The traveling salesman problem (TSP) is the problem of finding the shortest tour through all the nodes that a salesman has to visit. The TSP is probably the most famous and extensively studied problem in the field of combinatorial optimization. Because this problem is an NP-hard problem, practical large-scale instances cannot be solved by exact algorithms within acceptable computational times. ...
متن کاملSolving the Traveling Salesman Problem by an Efficient Hybrid Metaheuristic Algorithm
The traveling salesman problem (TSP) is the problem of finding the shortest tour through all the nodes that a salesman has to visit. The TSP is probably the most famous and extensively studied problem in the field of combinatorial optimization. Because this problem is an NP-hard problem, practical large-scale instances cannot be solved by exact algorithms within acceptable computational times. ...
متن کاملA reactive bone route algorithm for solving the traveling salesman problem
The traveling salesman problem (TSP) is a well-known optimization problem in graph theory, as well as in operations research that has nowadays received much attention because of its practical applications in industrial and service problems. In this problem, a salesman starts to move from an arbitrary place called depot and after visits all of the nodes, finally comes back to the depot. The obje...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Theor. Comput. Sci.
دوره 383 شماره
صفحات -
تاریخ انتشار 2007